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Abstract

A correspondence is established between one-variable fragments of (first-order)
intermediate logics defined over a fixed countable linear frame and Gödel modal
logics defined over many-valued equivalence relations with values in a closed
subset of the real unit interval. It is also shown that each of these logics can
be interpreted in the one-variable fragment of the corresponding constant domain
intermediate logic, which is equivalent to a Gödel modal logic defined over (crisp)
equivalence relations. Although the latter modal logics in general lack the finite
model property with respect to their frame semantics, an alternative semantics is
defined that has this property and used to establish co-NP-completeness results
for the one-variable fragments of the corresponding intermediate logics both with
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and without constant domains.
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1. Introduction

One-variable fragments of first-order logics are often studied in the guise of
propositional modal logics, where each unary predicate Pi(x) is replaced with a
propositional variable pi and the quantifiers (∀x) and (∃x) are replaced with the
modal operators � and ♦, respectively. This shift in perspective can be useful in
bringing algebraic methods to bear on these fragments to obtain axiomatization,
finite model properties, and complexity results. Notably, the modal counterparts
of the one-variable fragments of first-order classical logic CQC and intuitionistic
logic IQC are the modal logic S5 and intuitionistic modal logic MIPC, respectively,
both of which possess the finite model property and are decidable. One-variable
fragments of (first-order) intermediate logics have been studied from an algebraic
perspective in [2, 3, 4, 5] and as fragments of classical bimodal logics in [6, 7].
A key motivation for studying these fragments and their modal counterparts is
that they provide some first-order expressivity (e.g., for modelling the knowledge
and belief of agents), while typically remaining decidable; by contrast, the two-
variable fragments of many of these logics are known to be undecidable, even
with just a single monadic predicate symbol [8, 9].3

It was proved in [10] that the constant domain intermediate logic defined over
the frame 〈Q,≤〉 (or, equivalently, all linear frames) coincides with the first-order
Gödel logic defined over the real unit interval [0, 1]. This first-order logic can be
axiomatized by extending IQC with the prelinearity and constant domain axiom
schemas (α→ β)∨(β → α) and (∀x)(α∨β)→ ((∀x)α∨β), respectively, where
α and β are first-order formulas and, in the second schema, the variable x is not
free in β [11]. The modal counterpart of its one-variable fragment is the Gödel
modal logic S5(G)C, defined over equivalence relations, that can be axiomatized
by extending MIPC with prelinearity and a modal analogue of the constant domain
axiom schema [12]. More generally, it was proved in [13] that every constant
domain intermediate logic defined over a countable linear frame coincides with a
first-order Gödel logic defined over a closed subset A of [0, 1] that contains 0 and

3Note that the results of [9] do not apply to the two-variable fragment of an intermediate logic
defined over linear frames; indeed, the decidability of the two-variable fragment of first-order
Gödel logic remains an intriguing open problem.
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1 (called a Gödel set), and vice versa. The one-variable fragments of these logics
correspond to Gödel modal logics S5(A)C, defined over a Gödel set A, that form
modal counterparts of one-variable fragments of first-order Gödel logics. These
and other Gödel modal logics have been studied extensively in recent years in
the framework of many-valued modal logics (see [14, 15, 12, 16]) with the aim of
modelling modal notions such as necessity, belief, and spatio-temporal relations in
the presence of multiple degrees of truth, certainty, and possibility (see, e.g., [17,
18, 19]) and as a basis for fuzzy description logics (see, e.g., [20, 21, 22]).

In this paper, we investigate the analogous situation for one-variable fragments
of intermediate logics defined over a countable linear frame without the constant
domain assumption. More precisely, we prove that the modal counterpart of such
a one-variable fragment is a Gödel modal logic S5(A) defined over A-valued
equivalence relations for some Gödel setA (Section 4), and vice versa (Section 5).
Notably, the one-variable fragment of Corsi logic, the intermediate logic defined
over 〈Q,≤〉 (or, equivalently, all linear frames), axiomatized by extending IQC
with prelinearity [23], corresponds to the Gödel modal logic S5(G), axiomatized
by extending MIPC with prelinearity [12]. We also prove that the one-variable
fragment of an intermediate logic defined over a linear frame can be interpreted
in the one-variable fragment of the associated constant domain logic, obtaining an
interpretation of S5(A) in S5(A)C for any Gödel set A (Section 6).

In general, for an infinite Gödel set A, the Gödel modal logics S5(A) and
S5(A)C do not have the finite model property with respect to their standard frame
semantics. However, by restricting the values for box and diamond formulas to a
subset of A, an alternative semantics is obtained for S5(A)C (and implicitly, by
the results of the previous section, S5(A)) that has this property (Section 7).4 This
semantics is used to prove decidability and co-NP-completeness results for Gödel
modal logics based on a large class of Gödel sets for which consistency can be
checked with respect to certain finite structures (Section 8). The correspondences
established in previous sections then yield decidability and co-NP-completeness
results for one-variable fragments of a broad family of first-order intermediate
logics defined over a countable linear frame. In particular, it follows that the one-
variable fragment of Corsi logic (the intermediate logic of all linear frames) and
its modal counterpart S5(G) are co-NP-complete.

4A related alternative semantics for these logics was provided in a previous paper [16] by the
first three authors and J. Rogger, but this account contained an error.
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2. The One-Variable Fragments

In this section, we introduce the one-variable fragments of intermediate logics
over linear frames with and without constant domains that form the main focus
of this paper. For convenience, we restrict our definitions to the set Fm1 of one-
variable first-order formulas α, β, . . . built inductively from a countably infinite
set of unary predicates {Pi}i∈N, propositional connectives ∧,∨,→,⊥,>, a fixed
variable x, and quantifiers ∀,∃.

A frame is a non-empty poset K = 〈K,�〉 and is said to be linear if � is a
linear order. A one-variable intuitionistic Kripke model (or IK1-model for short)
based on K is a 4-tuple

M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉,

such that for all k ∈ K, each Dk is a non-empty set (called the domain of k) and
each Ik is a function mapping Pi to Ik(Pi) ⊆ Dk for i ∈ N, satisfying

k � l =⇒ Dk ⊆ Dl and Ik(Pi) ⊆ Il(Pi).

Satisfaction in M is defined inductively as follows for k ∈ K and a ∈ Dk:

M, k |=a ⊥ ⇐⇒ never
M, k |=a > ⇐⇒ always
M, k |=a Pi(x) ⇐⇒ a ∈ Ik(Pi)
M, k |=a α ∧ β ⇐⇒ M, k |=a α and M, k |=a β

M, k |=a α ∨ β ⇐⇒ M, k |=a α or M, k |=a β

M, k |=a α→ β ⇐⇒ M, l |=a α implies M, l |=a β for all l � k

M, k |=a (∀x)α ⇐⇒ M, l |=b α for all l � k and b ∈ Dl

M, k |=a (∃x)α ⇐⇒ M, k |=b α for some b ∈ Dk.

We call M an IKL1-model if K is linear, a CDIK1-model if it has constant domains
(i.e., Dk = Dl for all k, l ∈ K), and a CDIKL1-model if it satisfies both these
conditions. A formula α ∈ Fm1 is said to be valid in M if M, k |=a α for
all k ∈ K and a ∈ Dk. Given L ∈ {IK1, IKL1,CDIK1,CDIKL1}, we say that
α ∈ Fm1 is L-valid, denoted by |=L α, if it is valid in all L-models.

Let us briefly survey some known results for these one-variable fragments.
Let IQC be any axiomatization for first-order intuitionistic logic and consider
the following prelinearity (prl) and constant domain (cd) axiom schemas for all
first-order formulas α and β, where x is not free in β for (cd):

(prl) (α→ β) ∨ (β → α) and (cd) (∀x)(α ∨ β)→ ((∀x)α ∨ β).
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As a direct consequence of completeness results established in the literature for
the corresponding first-order logics, we obtain for any α ∈ Fm1,

|=IK1 α ⇐⇒ `IQC α [24]

|=CDIK1 α ⇐⇒ `IQC+(cd) α [25]

|=IKL1 α ⇐⇒ `IQC+(prl) α [23]

|=CDIKL1 α ⇐⇒ `IQC+(cd)+(prl) α [10].

One-variable fragments of first-order logics may also be studied as propositional
(modal) logics. Let Fm�♦ be the set of propositional formulas ϕ, ψ, . . . built
inductively over a set of propositional variables {pi}i∈N, propositional connectives
∧,∨,→,⊥,>, and modal connectives �,♦. The standard translation functions
(−)∗ and (−)◦ between Fm1 and Fm�♦ are defined inductively as follows for
? ∈ {∧,∨,→} and † ∈ {⊥,>}:

(Pi(x))∗ = pi p◦i = Pi(x)

†∗ = † †◦ = †
(α ? β)∗ = α∗ ? β∗ (ϕ ? ψ)◦ = ϕ◦ ? ψ◦

((∀x)α)∗ = �α∗ (�ϕ)◦ = (∀x)ϕ◦

((∃x)α)∗ = ♦α∗ (♦ϕ)◦ = (∃x)ϕ◦.

Clearly (α∗)◦ = α for any α ∈ Fm1 and (ϕ◦)∗ = ϕ for any ϕ ∈ Fm�♦, so we
may alternate between the first-order and modal notations as convenient.

Now let MIPC be any axiomatization of intuitionistic propositional logic
extended with the necessitation rule ϕ/�ϕ and the axiom schemas

�(ϕ→ ψ)→ (�ϕ→ �ψ) ♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ)

�ϕ→ ϕ ϕ→ ♦ϕ
♦ϕ→ �♦ϕ ♦�ϕ→ �ϕ
�(ϕ→ ψ)→ (♦ϕ→ ♦ψ),

and consider the additional axiom schemas

(prl) (ϕ→ ψ) ∨ (ψ → ϕ) and (cd)� �(�ϕ ∨ ψ)→ (�ϕ ∨�ψ).

The following completeness results may be found in the literature:

|=IK1 α ⇐⇒ `MIPC α∗ [26]

|=CDIK1 α ⇐⇒ `MIPC+(cd)� α
∗ [27]

|=CDIKL1 α ⇐⇒ `MIPC+(cd)�+(prl) α
∗ [12].
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In Section 4 of this paper, we establish the missing result:

|=IKL1 α ⇐⇒ `MIPC+(prl) α
∗.

We also extend the correspondence with modal logics to one-variable fragments
of intermediate logics defined over a single countable linear frame. Let us call an
IKL1-model based on a linear frame K an IKL1(K)-model. We say that α ∈ Fm1 is
IKL1(K)-valid and write |=IKL1(K) α if it is valid in all IKL1(K)-models. Similarly,
we say that α is CDIKL1(K)-valid and write |=CDIKL1(K) α if it is valid in all
constant domain IKL1(K)-models.

3. The Many-Valued Modal Logics

In this section, we define a family of many-valued modal logics that will be
shown in Sections 4 and 5 to correspond to the one-variable fragments defined in
the previous section. The propositional connectives of these logics are interpreted
via the semantics of Gödel propositional logic, and they therefore belong to the
family of Gödel modal logics studied in [28, 5, 14, 15, 12, 16].

Following [13, 29], let us call a closed subset A of the real unit interval [0, 1]
containing 0 and 1 a Gödel set, and define the corresponding Heyting algebra

A = 〈A,∧,∨,→, 0, 1〉, where x→ y :=

{
1 if x ≤ y

y otherwise.

Notable Gödel sets include G := [0, 1], yielding the standard Gödel algebra G,
G↓ := { 1

n
| n ∈ N+} ∪ {0}, G↑ := {n−1

n
| n ∈ N+} ∪ {1}, and the finite Gödel

sets Gn := {0, 1
n
, . . . , n−1

n
, 1} for n ∈ N+.

An S5(A)-frame is anA-valued equivalence relation: a pair 〈W,R〉 consisting
of a non-empty set W and a map R : W ×W → A satisfying for all u, v, w ∈ W ,

(i) Rww = 1 (reflexivity)

(ii) Rvw = Rwv (symmetry)

(iii) Ruv ∧Rvw ≤ Ruw (transitivity).

It is called crisp if Rvw ∈ {0, 1} for all v, w ∈ W , in which case R determines
an equivalence relation on W defined by v ∼ w :⇔ Rvw = 1.
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An S5(A)-model is a triple M = 〈W,R, V 〉 consisting of an S5(A)-frame
〈W,R〉 and a map V : {pi}i∈N ×W → A. The map V is extended inductively to
V : Fm�♦ ×W → A as follows, where ? ∈ {∧,∨,→}:

V (⊥, w) = 0

V (>, w) = 1

V (ϕ ? ψ,w) = V (ϕ,w) ? V (ψ,w)

V (�ϕ,w) =
∧
{Rwv → V (ϕ, v) | v ∈ W}

V (♦ϕ,w) =
∨
{Rwv ∧ V (ϕ, v) | v ∈ W}.

A formula ϕ ∈ Fm�♦ is said to be valid inM if V (ϕ,w) = 1 for all w ∈ W , and
S5(A)-valid, written |=S5(A) ϕ, if it is valid in all S5(A)-models. We also say that
ϕ ∈ Fm�♦ is S5(A)C-valid, written |=S5(A)C ϕ, if it is valid in all S5(A)-models
based on a crisp S5(A)-frame.

An S5(A)-model M = 〈W,R, V 〉 is called universal if Rwv = 1 for all
w, v ∈ W ; we then writeM = 〈W,V 〉, since the conditions for �,♦ simplify to

V (�ϕ,w) =
∧
{V (ϕ, v) | v ∈ W} and V (♦ϕ,w) =

∨
{V (ϕ, v) | v ∈ W}.

It is easily proved that |=S5(A)C ϕ if and only if ϕ is valid in all universal S5(A)C-
models, and hence that S5(A)C-validity corresponds to validity in a corresponding
first-order Gödel logic. The fact, proved in [10], that validity in the first-order
Gödel logic defined over [0, 1] coincides with validity in the first-order logic of
linear intuitionistic Kripke models with constant domains then yields

|=CDIKL1 α ⇐⇒ |=S5(G)C α
∗.

A general correspondence, established in [13], between first-order Gödel logics
and constant domain logics defined over a countable linear frame yields analogous
results for their one-variable fragments and crisp many-valued modal logics. That
is, the correspondence shows that for any countable linear frame K, there exists a
Gödel set A, and conversely, for any Gödel set A, there exists a countable linear
frame K such that

|=CDIKL1(K) α ⇐⇒ |=S5(A)C α
∗.

In Sections 4 and 5, we extend these results to logics defined over a countable
linear frame without the constant domain assumption, proving also that

|=IKL1 α ⇐⇒ |=S5(G) α
∗.
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In [11] it was proved that the propositional Gödel logic defined over the Gödel
set G↓ can be axiomatized by extending propositional intuitionistic logic with the
prelinearity axiom schema. It is also not hard to see that this is the propositional
logic of any infinite Gödel set A. On the other hand, it was proved in [29] that
there are countably infinitely many such first-order Gödel logics (considered as
sets of valid formulas) and that this bound in precise. Here we show that the same
is true when we restrict attention to their one-variable fragments; that is, we prove
that there are countably infinitely many logics S5(A)C (and, similarly, countably
infinitely many logics S5(A)) where A ranges over infinite Gödel sets.

Let us say that an element a of a Gödel set A is a right accumulation point
of A if a < 1 and for all b ∈ A such that a < b, there exists c ∈ A such that
a < c < b. Left accumulation points of A are defined analogously. Let R(A) and
L(A) denote the sets of right and left accumulation points of A, respectively. We
use the following formula to detect right accumulation points of A:

χ(p) := �((p→ �p)→ �p)→ �p.

Lemma 1. Let A be any Gödel set and let 〈W,R, V 〉 be an S5(A)-model with
w ∈ W . If V (χ(p), w) < 1, then V (�p, w) is a right accumulation point of A.

Proof. Suppose that V (χ(p), w) < 1. To prove that V (�p, w) is a right accu-
mulation point of A, it suffices to show that V (�p, w) < Rwv → V (p, v) for
all v ∈ W . For a contradiction, suppose that there exists v ∈ W such that
V (�p, w) = Rwv → V (p, v). From V (�p, w) = V (χ(p), w) < 1 it follows
that V (�p, w) = V (p, v) < Rwv. By the symmetry and transitivity of R, we
have Rwv ∧Rvu = Rwv ∧Rwu for all u ∈ W , so

Rwv → V (�p, v) = Rwv →
∧
{Rvu→ V (p, u) | u ∈ W}

= Rwv →
∧
{(Rwv ∧Rvu)→ V (p, u) | u ∈ W}

= Rwv →
∧
{(Rwv ∧Rwu)→ V (p, u) | u ∈ W}

= Rwv →
∧
{Rwu→ V (p, u) | u ∈ W}

= Rwv → V (�p, w).

This gives Rwv → V (�p, v) = Rwv → V (�p, w) = V (�p, w) < 1 and hence
V (�p, v) = V (�p, w) = V (p, v) < Rwv. Now note that from V (χ(p), w) < 1,
we obtain V (�((p → �p) → �p, w) > V (�p, w) and so V (�p, w) < Rwu →
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V ((p→ �p)→ �p, u) for all u ∈ W . We obtain a contradiction

V (�p, w) < Rwv → V ((p→ �p)→ �p, v)

= Rwv → V (�p, v)

= V (�p, v)

= V (�p, w).

Lemma 2. The sets of logics S5(A) and S5(A)C (considered as sets of valid
formulas), where A ranges over infinite Gödel sets, are both countably infinite.

Proof. It was proved in [29] that there are countably infinitely many first-order
Gödel logics. Hence, since each logic S5(A)C corresponds to the one-variable
fragment of a first-order Gödel logic, there are at most countably infinitely many
logics S5(A)C, where A ranges over infinite Gödel sets. Moreover, since S5(A)
can be interpreted in S5(A)C for any infinite Gödel set A, as will be proved in
Theorem 18, there are at most countably infinitely many logics S5(A), where A
again ranges over infinite Gödel sets.

It remains to show that infinitely many of the logics S5(A), and similarly the
logics S5(A)C, can be distinguished by formulas. For each n ∈ N+, let

χn :=
n∨
j=1

χ(pj) ∨
n−1∨
i=1

(�pi+1 → �pi).

We prove first that |=S5(A)C χn implies |R(A)| < n. Suppose that A has n distinct
right accumulation points a1 < · · · < an. Then for each j ∈ {1, . . . , n}, there
exists a strictly descending sequence (cjn)n∈N ⊆ (aj, 1] ∩ A converging to aj .
We define an S5(A)C-model M = 〈N, V 〉 with V (pj,m) = cjm for all m ∈ N
and j ∈ {1, . . . , n}. Then V (�pj,m) = aj < cjm = V (pj,m) for all j ∈
{1, . . . , n} and m ∈ N, which implies V (χ(pj), 0) = aj for all j ∈ {1, . . . , n}.
Moreover, V (�pi+1 → �pi, 0) = V (�pi, 0) = ai for all i ∈ {1, . . . , n − 1}.
Hence V (χn, 0) = an < 1 and 6|=S5(A)C χn.

Next, we prove that |R(A)| < n implies |=S5(A) χn. Suppose that V (χn, w) <
1 for some S5(A)-model 〈W,R, V 〉 and w ∈ W . It follows that V (�p1, w) <
· · · < V (�pn, w) and V (χ(pj), w) < 1 for all j ∈ {1, . . . , n}. By Lemma 1, each
of the V (�pj, w) is a right accumulation point of A and so |R(A)| ≥ n.

Since also |=S5(A) χn implies |=S5(A)C χn, we have that |=S5(A)C χn if and only
if |R(A)| < n, and |=S5(A) χn if and only if |R(A)| < n. Hence the sets of logics
S5(A) and S5(A)C, where A ranges over infinite Gödel sets, are both countably
infinite.
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Similarly, we can detect left accumulation points. For each n ∈ N+, let

θn :=
n∨
i=1

(♦(♦pi → pi)) ∨
n−1∨
i=1

(♦pi+1 → ♦pi).

It is then easy to verify that for any Gödel set A and n ∈ N+,

|=S5(A)C θn ⇐⇒ |=S5(A) θn ⇐⇒ |L(A) \{1}| < n.

4. From Linear Frames to Gödel Sets

In this section, we match the one-variable fragment of an intermediate logic
defined over a single countable linear frame to a corresponding Gödel modal logic.
In particular, we match the one-variable fragment of the intermediate logic defined
over 〈Q,≤〉 to the standard Gödel modal logic S5(G).

Let K = 〈K,� 〉 be any countable linear frame. A subset U ⊆ K is called
an upset of K if whenever k ∈ U , l ∈ K, and k � l, also l ∈ U . For each
k ∈ K, we denote the upset {l ∈ K | k � l} by [k). Now let Up(K) be the set
of upsets of K. Then 〈Up(K),⊆〉 is a complete linearly ordered set with greatest
and least elements K and ∅, respectively. Moreover, since K is countable, there
exists a complete (i.e., preserving all suprema and infima) order-embedding of
〈Up(K),⊆〉 into 〈[0, 1],≤〉 (see [30]). Hence we may identify Up(K) with a
Gödel set and obtain an S5(Up(K))-model based on the Heyting algebra

Up(K) = 〈Up(K),∩,∪,→, ∅, K〉, where X → Y :=

{
K if X ⊆ Y

Y otherwise.

Now let M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉 be any IKL1(K)-model. We define for
all a, b ∈ W and i ∈ N,

W :=
⋃
k∈K

Dk

U(a) := {k ∈ K | a ∈ Dk}

Rab :=

{
K a = b

U(a) ∩ U(b) a 6= b

V (pi, a) := {k ∈ K | a ∈ Ik(Pi)}.
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Note that each V (pi, a) is an upset of K since k � l implies Ik(Pi) ⊆ Il(Pi).
Moreover, Raa = K, Rab = Rba, and Rab ∩ Rbc ⊆ Rac for all a, b, c ∈
W . Hence MM := 〈W,R, V 〉 is an S5(Up(K))-model. Moreover, if M is a
CDIKL1(K)-model, thenMM is universal.

Lemma 3. Let M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉 be an IKL1(K)-model over a
countable linear frame K = 〈K,�〉 withMM = 〈W,R, V 〉. Then for any ϕ ∈
Fm�♦, k ∈ K, and a ∈ Dk,

M, k |=a ϕ◦ ⇐⇒ k ∈ V (ϕ, a).

Proof. We begin with the following useful observation. If a ∈ Dk and b ∈ W ,
then b ∈ Dk if and only if k ∈ Rab. Just note that if b = a, this is trivial, and if
b 6= a, then k ∈ U(a) ∩ U(b) if and only if k ∈ U(b), i.e., b ∈ Dk.

We prove the claim by induction on the length of ϕ. The base cases for ⊥, >,
and pi are immediate from the definitions, and the cases for ∧ and ∨ are straight-
forward, so we just consider the cases for→, �, and ♦.

• Suppose that ϕ = ψ1 → ψ2.

M, k |=a (ψ1 → ψ2)
◦ ⇐⇒ M, l |=a ψ◦1 implies M, l |=a ψ◦2 for all l � k

⇐⇒ l ∈ V (ψ1, a) implies l ∈ V (ψ2, a) for all l � k

⇐⇒ [k) ∩ V (ψ1, a) ⊆ V (ψ2, a)

⇐⇒ [k) ⊆ (V (ψ1, a)→ V (ψ2, a))

⇐⇒ k ∈ V (ψ1 → ψ2, a).

• Suppose that ϕ = �ψ.

M, k |=a (�ψ)◦ ⇐⇒ M, l |=b ψ◦ for all l � k and b ∈ Dl

⇐⇒ l ∈ V (ψ, b) for all l � k and b ∈ W such that l ∈ Rab

⇐⇒ [k) ∩Rab ⊆ V (ψ, b) for all b ∈ W

⇐⇒ [k) ⊆ (Rab→ V (ψ, b)) for all b ∈ W

⇐⇒ k ∈
⋂
{Rab→ V (ψ, b) | b ∈ W}

⇐⇒ k ∈ V (�ψ, a).
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• Suppose that ϕ = ♦ψ.

M, k |=a (♦ψ)◦ ⇐⇒ M, k |=b ψ◦ for some b ∈ Dk

⇐⇒ k ∈ V (ψ, b) and k ∈ Rab for some b ∈ W

⇐⇒ k ∈
⋃
{Rab ∩ V (ψ, b) | b ∈ W}

⇐⇒ k ∈ V (♦ψ, a).

For the converse direction, suppose again that K = 〈K,�〉 is a countable
linear frame. LetM = 〈W,R, V 〉 be any S5(Up(K))-model and fix w0 ∈ W .
We define for each k ∈ K and i ∈ N,

Dk := {v ∈ W | k ∈ Rw0v}

Ik(Pi) := {v ∈ W | k ∈ V (pi, v)} ∩Dk.

It is easily checked that if k � l, thenDk ⊆ Dl and Ik(Pi) ⊆ Il(Pi) for each i ∈ N.
Hence MM,w0 := 〈K,�, {Dk}k∈K , {Ik}k∈K〉 is an IKL1(K)-model. Moreover, if
M is universal, then MM,w0 is a CDIKL1(K)-model.

Lemma 4. Let K = 〈K,�〉 be a countable linear frame and letM = 〈W,R, V 〉
be an S5(Up(K))-model withw0 ∈ W and MM,w0 = 〈K,�, {Dk}k∈K , {Ik}k∈K〉.
For any ϕ ∈ Fm�♦, k ∈ K, and v ∈ Dk,

MM,w0 , k |=v ϕ◦ ⇐⇒ k ∈ V (ϕ, v).

Proof. Note first that if v ∈ Dk, then k ∈ Rw0v and for any l � k and u ∈ W ,

l ∈ Rw0u =⇒ l ∈ Ruw0 ∩Rw0v ⊆ Ruv

l ∈ Ruv =⇒ l ∈ Rw0v ∩Rvu ⊆ Rw0u;

that is, Rw0u ∩ [k) = Rvu ∩ [k).
We prove the claim by induction on the length of ϕ. The base cases for ⊥, >,

and pi are immediate from the definitions and the cases for ∧ and ∨ are straight-
forward, so we just consider the cases for→, �, and ♦.
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• Suppose that ϕ = ψ1 → ψ2. Then MM,w0 , k |=v (ψ1 → ψ2)
◦

⇐⇒ MM,w0 , l |=v ψ◦1 implies MM,w0 , l |=v ψ◦2 for all l � k

⇐⇒ l ∈ V (ψ1, v) implies l ∈ V (ψ2, v) for all l � k

⇐⇒ [k) ∩ V (ψ1, v) ⊆ V (ψ2, v)

⇐⇒ [k) ⊆ (V (ψ1, v)→ V (ψ2, v))

⇐⇒ k ∈ V (ψ1 → ψ2, v).

• Suppose that ϕ = �ψ. Then MM,w0 , k |=v (�ψ)◦

⇐⇒ MM,w0 , l |=u ψ◦ for all l � k and u ∈ Dl

⇐⇒ l ∈ V (ψ, u) for all l � k and u ∈ W such that l ∈ Rw0u

⇐⇒ l ∈ V (ψ, u) for all l � k and u ∈ W such that l ∈ Rvu

⇐⇒ [k) ∩Rvu ⊆ V (ψ, u) for all u ∈ W

⇐⇒ [k) ⊆ (Rvu→ V (ψ, u)) for all u ∈ W

⇐⇒ k ∈ (Rvu→ V (ψ, u)) for all u ∈ W

⇐⇒ k ∈
⋂
{Rvu→ V (ψ, u) | u ∈ W}

⇐⇒ k ∈ V (�ψ, v).

• Suppose that ϕ = ♦ψ. Then MM,w0 , k |=v (♦ψ)◦

⇐⇒ MM,w0 , k |=u ψ◦ for some u ∈ Dk

⇐⇒ k ∈ V (ψ, u) for some u ∈ W such that k ∈ Rw0u

⇐⇒ k ∈ V (ψ, u) for some u ∈ W such that k ∈ Rvu

⇐⇒ k ∈ V (ψ, u) ∩Rvu for some u ∈ W

⇐⇒ k ∈
⋃
{V (ψ, u) ∩Rvu | u ∈ W}

⇐⇒ k ∈ V (♦ψ, v).

We now put these two lemmas together to obtain the desired correspondence,
recalling that the result for the constant domain case is implicit in [13].
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Theorem 5. For any countable linear frame K = 〈K,�〉 and α ∈ Fm1,

|=IKL1(K) α ⇐⇒ |=S5(Up(K)) α
∗

|=CDIKL1(K) α ⇐⇒ |=S5(Up(K))C α
∗.

Proof. Suppose first that 6|=IKL1(K) α. Then there exists an IKL1(K)-model M =
〈K,�, {Dk}k∈K , {Ik}k∈K〉, k ∈ K, and a ∈ Dk such that M, k 6|=a α. An
application of Lemma 3 with MM = 〈W,R, V 〉 yields k 6∈ V (α∗, a). Hence
V (α∗, a) 6= K and 6|=S5(Up(K)) α

∗.
Suppose now that 6|=S5(Up(K)) α

∗. Then there exists an S5(Up(K))-model
M = 〈W,R, V 〉 and w0 ∈ W such that V (α∗, w0) 6= K. Let k ∈ K \V (α∗, w0).
Then Lemma 4 yields MM,w0 , k 6|=w0 α, so 6|=IKL1(K) α.

The second equivalence follows from the fact that if M is a CDIKL1(K)-
model, then MM is universal, and, conversely, if M is universal, then MM,w0

is a CDIKL1(K)-model.

By choosing suitable linear frames, we obtain the corresponding Gödel modal
logics defined over certain notable Gödel sets.

Corollary 6. For any formula α ∈ Fm1 and n ∈ N \{0, 1},

|=IKL1(〈N,≤〉) α ⇐⇒ |=S5(G↓) α
∗ |=CDIKL1(〈N,≤〉) α ⇐⇒ |=S5(G↓)C α

∗

|=IKL1(〈N,≥〉) α ⇐⇒ |=S5(G↑) α
∗ |=CDIKL1(〈N,≥〉) α ⇐⇒ |=S5(G↑)C α

∗

|=IKL1(〈{1,...,n},≤〉) α ⇐⇒ |=S5(Gn) α
∗ |=CDIKL1(〈{1,...,n},≤〉) α ⇐⇒ |=S5(Gn)C α

∗.

For the logic S5(G), however, the obvious choice of a countable linear frame
Q = 〈Q,≤〉 produces a Gödel set Up(Q) that is not order-isomorphic to [0, 1].5

In the next section, we will show that there exists a matching countable linear
frame for every Gödel set A, but first we give here a construction that directly
relates S5(G)-validity to IKL1(Q)-validity.

For technical reasons, we begin by showing that we can restrict our attention to
a particular class of S5(G)-models. We say that an S5(G)-modelM = 〈W,R, V 〉
is irrational if V (ϕ,w) is irrational, 0, or 1 for all ϕ ∈ Fm�♦ and w ∈ W .

Lemma 7. For any countable S5(G)-model M = 〈W,R, V 〉, there exists an
irrational S5(G)-model M′ = 〈W,R′, V ′〉 such that for all ϕ, ψ ∈ Fm�♦ and
w ∈ W ,

V (ϕ,w) < V (ψ,w) ⇐⇒ V ′(ϕ,w) < V ′(ψ,w).

5Indeed, as explained in [13], the Gödel set Up(Q) is isomorphic to the Cantor set.

14



Proof. By [30, Lemma 3.7], there exists a complete order-embedding f from the
countable set S = {V (ϕ,w) | w ∈ W ; ϕ ∈ Fm�♦} ∪R[W ×W ] into Q ∩ [0, 1].
For each q ∈ Q ∩ [0, 1], define

g(q) :=

{
π
3
q q ≤ 1

2
π
6

+ (2− π
3
)(q − 1

2
) q > 1

2
.

Then g is a complete order-embedding from Q ∩ [0, 1] into ([0, 1] \Q) ∪ {0, 1}
with g(0) = 0, g(1) = 1. So h = g ◦ f is a complete order-embedding from S
into ([0, 1] \Q) ∪ {0, 1} with h(0) = 0, h(1) = 1. Now let M′ = 〈W,R′, V ′〉
where R′wv = h(Rwv) and V ′(pi, w) = h(V (pi, w)) for w, v ∈ W and i ∈ N.
A straightforward induction on formula length yields V ′(ϕ,w) = h(V (ϕ,w)) for
all ϕ ∈ Fm�♦ and w ∈ W and the claim follows immediately.

Now let (0, 1)Q := (0, 1)∩Q and (0, 1)Q := 〈(0, 1)Q,≥〉. Given any irrational
S5(G)-modelM = 〈W,R, V 〉 and w0 ∈ W , we define for q ∈ (0, 1)Q and i ∈ N,

Dq = {v ∈ W | Rw0v ≥ q} and Iq(Pi) = {v ∈ W | V (pi, v) ≥ q} ∩Dq.

It is easily checked that if q ≥ r, then Dq ⊆ Dr and Iq(Pi) ⊆ Ir(Pi) for each
i ∈ N and q, r ∈ (0, 1)Q, so we obtain an IKL1((0, 1)Q)-model

Mi
M,w0

:= 〈(0, 1)Q,≥, {Dq}q∈(0,1)Q , {Iq}q∈(0,1)Q〉.

Moreover, ifM is universal, then Mi
M,w0

is a CDIKL1((0, 1)Q)-model.

Lemma 8. Let M = 〈W,R, V 〉 be an irrational S5(G)-model with w0 ∈ W
and Mi

M,w0
= 〈(0, 1)Q,≥, {Dq}q∈(0,1)Q , {Iq}q∈(0,1)Q〉. For any ϕ ∈ Fm�♦, q ∈

(0, 1)Q, and w ∈ Dq,

Mi
M,w0

, q |=w ϕ◦ ⇐⇒ V (ϕ,w) ≥ q.

Proof. We prove the claim by induction on the length of ϕ. The base cases for ⊥,
>, and pi are immediate from the definitions and the cases for ∧, ∨, and → are
straightforward, so we just consider the cases for �, and ♦.

• For ϕ = �ψ, observe first that

Mi
M,w0

, q |=w (∀x)ψ◦ ⇐⇒ Mi
M,w0

, r |=v ψ◦ for all r ≤ q and v ∈ Dr

⇐⇒ V (ψ, v) ≥ r for all r ≤ q and v ∈ Dr;

V (�ψ,w) ≥ q ⇐⇒
∧
{Rwv → V (ψ, v) | v ∈ W} ≥ q

⇐⇒ Rwv → V (ψ, v) ≥ q for all v ∈ W
⇐⇒ V (ψ, v) ≥ q ∧Rwv for all v ∈ W.
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For the left-to-right direction suppose that V (ψ, v) ≥ r for all r ≤ q and
v ∈ Dr. By assumption, w ∈ Dq, so Rw0w ≥ q. Let v ∈ W . If q ≤ Rwv,
then, by symmetry and transitivity, Rw0v ≥ q, i.e., v ∈ Dq, and hence
V (ψ, v) ≥ q = q ∧ Rwv as required. Suppose now that q > Rwv. Then
Rw0w ≥ q > Rwv and, by transitivity, Rwv = Rw0w ∧ Rwv ≤ Rw0v.
But also, if Rwv < Rw0v, then, by symmetry and transitivity, Rwv <
Rw0v∧Rw0w = Rww0∧Rw0v ≤ Rwv, a contradiction. SoRw0v = Rwv.
It follows that for any r ∈ (0, 1)Q satisfying r ≤ Rw0v, we have v ∈ Dr

and hence V (ψ, v) ≥ r. Finally, since (0, 1)Q is dense in (0, 1) \Q, we have
sup{r ∈ (0, 1)Q | Rw0v ≥ r} = Rw0v, so V (ψ, v) ≥ Rw0v = q ∧Rwv.

For the right-to-left direction, suppose that V (ψ, v) ≥ q ∧ Rwv for every
v ∈ W . Let r ≤ q and v ∈ Dr. Then Rw0v ≥ r. Since w ∈ Dq,
also Rw0w ≥ q ≥ r, and by symmetry and transitivity, Rwv ≥ r. So
V (ψ, v) ≥ q ∧Rwv ≥ r.

• For ϕ = ♦ψ, observe first that since M is irrational and q ∈ (0, 1)Q,
V (ϕ,w) ≥ q if and only if V (ϕ,w) > q. Now observe that

Mi
M,w0

, q |=w (∃x)ψ◦ ⇐⇒ Mi
M,w0

, q |=v ψ◦ for some v ∈ Dq

⇐⇒ V (ψ, v) ≥ q for some v ∈ Dq;

V (♦ψ,w) ≥ q ⇐⇒
∨
{Rwv ∧ V (ψ, v) | v ∈ W} ≥ q

⇐⇒
∨
{Rwv ∧ V (ψ, v) | v ∈ W} > q

⇐⇒ Rwv ∧ V (ψ, v) ≥ q for some v ∈ W.

For the left-to-right direction, suppose that V (ψ, v) ≥ q for some v ∈ Dq.
Since w, v ∈ Dq, by transitivity, Rwv ≥ q and hence Rwv ∧ V (ψ, v) ≥ q.
For the right-to-left direction, suppose that there exists v ∈ W such that
Rwv ∧ V (ψ, v) ≥ q, i.e., Rwv ≥ q and V (ψ, v) ≥ q. Since w ∈ Dq, also
Rw0v ≥ q, so v ∈ Dq and V (ψ, v) ≥ q.

We can now use this last lemma to prove the desired result, noting that the
constant domain case was already proved in [10].

Theorem 9. For any α ∈ Fm1,

|=S5(G) α
∗ ⇐⇒ |=IKL1 α ⇐⇒ |=IKL1(Q) α

|=S5(G)C α
∗ ⇐⇒ |=CDIKL1 α ⇐⇒ |=CDIKL1(Q) α.
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Proof. Clearly, |=IKL1 α implies |=IKL1(Q) α. Suppose now that 6|=IKL1 α. Then
there exists a countable linear frame K = 〈K,�〉 and an IKL1(K)-model M =
〈K,�, {Dk}k∈K , {Ik}k∈K〉, k ∈ K, and a ∈ Dk such that M, k 6|=a α. An
application of Lemma 3 with MM = 〈W,R, V 〉 yields k 6∈ V (α∗, a). Hence
V (α∗, a) 6= K and, since there exists a complete embedding of 〈Up(K),⊆〉 into
〈[0, 1],≤〉, we obtain 6|=S5(G) α

∗.
Now suppose that 6|=S5(G) α

∗. It follows that there exist a countable S5(G)-
model M = 〈W,R, V 〉 and w ∈ W such that V (α∗, w) < 1. By Lemma 7,
there exist an irrational S5(G)-modelM′ = 〈W,R′, V ′〉 and r ∈ (0, 1)Q such that
V ′(α∗, w) < r < 1. But then Lemma 8 gives an IKL1((0, 1)Q)-model Mi

M′,w such
that Mi

M′,w, r 6|=w α. So 6|=IKL1((0,1)Q) α and since (0, 1)Q is order-isomorphic to
Q, also 6|=IKL1(Q) α.

Finally, for the second chain of equivalences, it suffices to recall that if M is a
CDIKL1(K)-model, thenMM is universal, and ifM is universal, then Mi

M,w0
is

a CDIKL1((0, 1)Q)-model.

5. From Gödel Sets to Linear Frames

In the previous section, we proved that for every countable linear frame K,
there exists a Gödel set A such that the validity of any α ∈ Fm1 in IKL1(K)
corresponds to the validity of α∗ in S5(A) (Theorem 5). In this section, we prove
the converse: for any Gödel set A, there exists a countable linear frame K such
that the validity of any ϕ ∈ Fm�♦ in S5(A) corresponds to the validity of ϕ◦ in
IKL1(K) (Theorem 15).

We follow the strategy used in [13] to establish a correspondence between
first-order Gödel logics and constant domain logics defined over a countable linear
frame, making the necessary adjustments to accommodate many-valued relations
and increasing domains. First we show that for any countable Gödel set A, the
algebra A is isomorphic to Up(K) for some linear frame K. Then, for the general
case, we partition any Gödel set A into a countable part and an uncountable part.
Using this partition and the result for countable Gödel sets, we show that |=S5(A)

coincides with |=S5(B) for some Gödel set B such that B is isomorphic to some
Up(K). Theorem 5 then gives the desired result.

Let us begin by recalling some topological terminology, referring to [31] for
further details. A point x ∈ R is called a limit point if every open neighbourhood
of x contains a point y 6= x. A subset X ⊆ R is called perfect if it is closed and
all points inX are limit points in its relative topology. By a result of Cantor, every
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non-empty perfect set is uncountable. A proof of the following classical theorem
may be found in [31].

Theorem 10 (Cantor-Bendixson). If A is a closed subset of R, then it can be
(uniquely) written as A = X ∪C for some perfect set X and countable set C such
that X ∩C = ∅. The set X is called the perfect kernel of A and the set C is called
the scattered part of A.

We also recall a useful lemma proved in [32].

Lemma 11 ([32, Section 5.4.1]). Let C ⊆ [0, 1] be a countable set and X ⊆ [0, 1]
a perfect set. Then there exists an order-embedding h from C into X preserving
all existing suprema and infima, and satisfying h(inf C) = inf X if inf C ∈ C.

We now consider the case of countable Gödel sets.

Lemma 12. For any countable Gödel set A, there exists a countable linear frame
K such that Up(K) and A are isomorphic.

Proof. We call x ∈ A left isolated in A if sup{y ∈ A | y < x} < x and define
K := {x ∈ A | x left isolated in A}. Note that K is non-empty, since otherwise
A would be perfect and thus uncountable. Let K = 〈K,≥〉 and consider the map
h : Up(K)→ A; U 7→ supU . Since A is closed, h is well-defined. First we show
that h is an order-embedding. Suppose that U ( U ′ for some U,U ′ ∈ Up(K),
and let x ∈ U ′ \U . Since x is left isolated in A, we have h(U) = supU <
x ≤ supU ′ = h(U ′). It remains to prove that h is surjective. Given a ∈ A,
we consider the upset Ua := {x ∈ K | x ≤ a} of K. Note that h(Ua) ≤ a.
Suppose for a contradiction that h(Ua) < a. Then a 6∈ K, since if a ∈ K, clearly
h(Ua) = a. So a is not left isolated in A, i.e., sup{y ∈ A | y < a} = a, and
[h(Ua), a] ∩A contains infinitely many points. Moreover, for any c ∈ A such that
h(Ua) < c < a, the set [c, a] ∩ A is again infinite and contains no left isolated
points. But then [c, a] ∩ A is perfect and hence uncountable, a contradiction.

It follows that h is an order-isomorphism and since h(∅) = 0 and h(K) = 1,
h is an isomorphism between the Heyting algebras Up(K) and A.

For an uncountable Gödel set A, we obtain a partition of A into a non-empty
(uncountable) perfect kernel X and a countable set C, by Theorem 10. To deal
with such uncountable Gödel sets, we prove the following lemma, noting that the
case for S5(A)C follows already from results in [13].
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Lemma 13. Let A be a Gödel set with a non-empty perfect kernel X , and let
B := A ∪ [inf X, 1]. Then for all ϕ ∈ Fm�♦,

|=S5(A) ϕ ⇐⇒ |=S5(B) ϕ and |=S5(A)C ϕ ⇐⇒ |=S5(B)C ϕ.

Proof. The right-to-left-direction of both statements follows from the fact that
A ⊆ B. For the other direction, suppose that VB(ϕ,w) < 1 for some S5(B)-
model MB = 〈W,RB, VB〉 and w ∈ W . For each subformula �ψ or ♦ψ of
ϕ, there exists a countable subset W�ψ or W♦ψ of W such that, respectively,
VB(�ψ,w) =

∧
{Rwv → V (ψ, v) | v ∈ W�ψ} or VB(♦ψ,w) =

∨
{Rwv ∧

V (ψ, v) | v ∈ W♦ψ}. An easy induction yields V ′B(ϕ,w) < 1 whenR′B and V ′B are
RB and VB restricted toW ′ = {w}∪

⋃
{Wψ′ | ψ′ is a subformula �ψ or ♦ψ of ϕ}.

We may therefore assume thatW is countable and hence also thatC := {VB(ψ, v) |
ψ a subformula of ϕ; v ∈ W} is countable. So, as B is uncountable, there exists
b ∈ B \C such that VB(ϕ,w) < b < 1. By Lemma 11, there exists an order-
embedding h from [inf X, b]∩ (C∪{b}) into X . We define the following function
kb : B → A such that for every a ∈ B,

kb(a) :=


a a < inf X

h(a) inf X ≤ a ≤ b

1 otherwise.

Now let MA = 〈W,RA, VA〉 be the S5(A)-model where RAvu = kb(RBvu)
and VA(pi, v) = kb(VB(pi, v)) for all u, v ∈ W and each pi that occurs in ϕ and
VA(pj, v) = 1 for all other propositional variables pj .6

We claim that this valuation extends to all subformulas ofϕ; that is, VA(ψ, v) =
kb(VB(ψ, v)) for every subformula ψ of ϕ and v ∈ W . It follows from this claim
that VA(ϕ,w) < 1, since

either VB(ϕ,w) < inf X and VA(ϕ,w) = VB(ϕ,w) < b < 1

or inf X ≤ VB(ϕ,w) < b and VA(ϕ,w) = h(VB(ϕ,w)) < h(b) ≤ 1.

So 6|=S5(A) ϕ. Moreover, if MB is universal, then so is MA, so we also obtain
that 6|=S5(B)C ϕ implies 6|=S5(A)C ϕ.

We prove the claim by induction on the length of a subformula ψ of ϕ. The
base cases follow by definition and the cases for the propositional connectives are

6Note that this function differs slightly from the one used for the constant domain case in [29].
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straightforward, using the fact that kb(c ? d) = kb(c) ? kb(d) for all c, d ∈ B and
? ∈ {∧,∨,→}. For a subformula �ψ, we have

VA(�ψ, v) =
∧
{RAvu→ VA(ψ, u) | u ∈ W}

=
∧
{kb(RBvu)→ kb(VB(ψ, u)) | u ∈ W}

=
∧
{kb(RBvu→ VB(ψ, u)) | u ∈ W}

= kb(
∧
{RBvu→ VB(ψ, u) | u ∈ W}) (1)

= kb(VB(�ψ, v)).

To prove (1), there are three cases to consider:

(i) VB(�ψ, v) < inf X . Then kb(VB(�ψ, v)) = VB(�ψ, v). Moreover, U :=
{u ∈ W | RBvu0 → VB(ψ, u0) < inf X} 6= ∅ and, by definition,
kb(RBvu→ VB(ψ, u)) = RBvu→ VB(ψ, u) for all u ∈ U .

(ii) inf X ≤ VB(�ψ, v) ≤ b. By the choice of b, we have VB(�ψ, v) < b. So
inf X ≤ RBvu → VB(ψ, u) for all u ∈ W and RBvt → VB(ψ, t) < b
for some t ∈ W . It follows that

∧
{kb(RBvu → VB(ψ, u)) | u ∈ W} =∧

{h(RBvu → VB(ψ, u)) | u ∈ W ; RBvu → VB(ψ, u) < b} and the fact
that h preserves infima concludes the case.

(iii) b < VB(�ψ, v). Then b ≤ RBvu → VB(ψ, u) for all u ∈ W and hence
kb(RBvu→ VB(ψ, u)) = 1 = kb(VB(�ψ, v)) for all u ∈ W .

Next, for a subformula ♦ψ, we have

VA(♦ψ, v) =
∨
{RAvu ∧ VA(ψ, u) | u ∈ W}

=
∨
{kb(RBvu) ∧ kb(VB(ψ, u)) | u ∈ W}

=
∨
{kb(RBvu ∧ VB(ψ, u)) | u ∈ W}

= kb(
∨
{RBvu ∧ VB(ψ, u) | u ∈ W}) (2)

= kb(VB(♦ψ, v)).

To prove (2), there are again three cases to consider:

(i) VB(♦ψ, v) < inf X . Then kb(VB(♦ψ, v)) = VB(♦ψ, v) and, since RBvu ∧
VB(ψ, u) < inf X for all u ∈ W , also kb(RBvu ∧ VB(ψ, u)) = RBvu ∧
VB(ψ, u) for all u ∈ W , yielding (2).
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(ii) inf X ≤ VB(♦ψ, v) ≤ b. If inf X ≤ RBvt ∧ VB(ψ, t) for some t ∈ W ,
then (2) follows since h preserves existing suprema. Otherwise RBvu ∧
VB(ψ, u) < inf X for all u ∈ W , and so VB(♦ψ, v) = inf X . But then
kb(RBvu ∧ VB(ψ, u)) = RBvu ∧ VB(ψ, u) for all u ∈ W , and their join is
inf X . The equality (2) then follows from the fact that h(inf X) = inf X .

(iii) b < VB(♦ψ, v). Then there exists u ∈ W such that b < RBvu ∧ VB(ψ, u),
i.e., kb(RBvu ∧ VB(ψ, u)) = 1 = kb(VB(♦ψ, v)).

We will also make use of the following lemma from [13] for composing Gödel
sets and linear frames.

Lemma 14 ([13, Lemma 24]). LetA1 andA2 be Gödel sets and let K1 = 〈K1,�1

〉 and K2 = 〈K2,�2〉 be linear frames withK1∩K2 = ∅ such that Up(K1) ∼= A1

and Up(K2) ∼= A2. Define K = 〈K,�〉, where K := K1 ∪K2 and

� := �1 ∪ �2 ∪ {〈k2, k1〉 | k2 ∈ K2; k1 ∈ K1},

and for any ρ ∈ (0, 1), the Gödel set

A := ρA1 ∪ ((1− ρ)A2 + ρ).

Then Up(K) ∼= A.

We are now able to prove the main theorem of this section.

Theorem 15. For each Gödel set A, there exists a countable linear frame K such
that for all ϕ ∈ Fm�♦,

|=S5(A) ϕ ⇐⇒ |=IKL1(K) ϕ
◦ and |=S5(A)C ϕ ⇐⇒ |=CDIKL1(K) ϕ

◦.

Proof. Let A be a Gödel set. By Theorem 10, there exists a partition of A into
a countable set C and a perfect set X . If A is countable, then X = ∅ and so by
Lemma 12 and Theorem 5, we are done. Now suppose that A is uncountable and
so X 6= ∅. We define

A1 := A ∪ [inf X, 1] and A2 := (A ∩ [0, inf X]) ∪ C[infX,1],

where C[infX,1] is the middle third Cantor set on the interval [inf X, 1]. Note that
the perfect kernelX2 ofA2 is C[infX,1] and soA2∪[inf X2, 1] = A1. By Lemma 13,
for all ϕ ∈ Fm�♦,

|=S5(A) ϕ ⇐⇒ |=S5(A1) ϕ ⇐⇒ |=S5(A2) ϕ

|=S5(A)C ϕ ⇐⇒ |=S5(A1)C ϕ ⇐⇒ |=S5(A2)C ϕ.
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If inf X = 0, then A1 = [0, 1], in which case S5(A) coincides with S5(G) and
S5(A)C coincides with S5(G)C. If inf X > 0, we can write A2 = ρB1 ∪ ((1 −
ρ)B2 + ρ), where ρ = inf X , B1 = (1/ρ)(A ∩ [0, ρ]), and B2 = C[0,1]. Since
A ∩ [0, ρ] ⊆ C ∪ {inf X}, B1 is countable. Therefore, by Lemma 12, B1 is
isomorphic to Up(K1) for some linear frame K1 = 〈K1,�1〉. Moreover, B2 is
isomorphic to Up((0, 1)Q). So by Lemma 14, we obtain a linear frame K =
〈K,�〉 such that A2 is isomorphic to Up(K). Theorem 5 then completes the
proof.

6. An Interpretation Theorem

In this section we provide an interpretation of the one-variable fragment of an
intermediate logic defined over a linear frame in the one-variable fragment of the
corresponding constant domain logic, thereby obtaining also an interpretation of
S5(A) in S5(A)C for any Gödel set A. The key idea is to describe the domains
of an IKL1-model using a distinguished unary predicate P0 for the corresponding
CDIKL1-model. To this end, let Fmr

1 ⊆ Fm1 denote the set of one-variable first-
order formulas not containing P0. An IKLr1(K)-model, based on a linear frame
K = 〈K,�〉, is an IKL1(K)-model M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉 such that
the functions {Ik}k∈K are restricted to {Pi}i∈N+ .

Now let K = 〈K,� 〉 be any linear frame and let M = 〈K,�, {D}, {Ik}k∈K〉
be a CDIKL1(K)-model satisfying⋂

k∈K

Ik(P0) 6= ∅.

Define for each k ∈ K and i ∈ N+,

Dk := Ik(P0) and Irk(Pi) := Ik(Pi) ∩Dk.

Then Mr = 〈K,�, {Dk}k∈K , {Irk}k∈K〉 is an IKLr1(K)-model. Indeed, M 7→Mr

is a surjective map from CDIKL1(K)-models to IKLr1(K)-models.
For each α ∈ Fmr

1, we define αc ∈ Fm1 inductively by relativizing quantifiers
to the unary predicate P0. That is, (Pi(x))c := Pi(x) for each i ∈ N+, ⊥c := ⊥,
>c := >, (α ? β)c := αc ? βc for ? ∈ {∧,∨,→}, and

((∀x)α)c := (∀x)(P0(x)→ αc)

((∃x)α)c := (∃x)(P0(x) ∧ αc).
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Lemma 16. Let K = 〈K,� 〉 be a linear frame and let M = 〈K,�, {D}, {Ik}k∈K〉
be a CDIKL1(K)-model satisfying

⋂
k∈K Ik(P0) 6= ∅. Then for any α ∈ Fmr

1,
k ∈ K, and a ∈ Ik(P0),

Mr, k |=a α ⇐⇒ M, k |=a αc.

Proof. We prove the claim by induction on the length of α. For the base case,
using the assumption that a ∈ Ik(P0) = Dk, we have for each i ∈ N+,

Mr, k |=a Pi(x) ⇐⇒ a ∈ Irk(Pi) ⇐⇒ a ∈ Ik(Pi) ⇐⇒ M, k |=a Pi(x).

The cases for the propositional connectives follow easily using the induction hy-
pothesis and the definition of αc, so we just check the cases for the quantifiers:

Mr, k |=a (∀x)β ⇐⇒ Mr, l |=b β for all l � k and b ∈ Dl

⇐⇒ M, l |=b βc for all l � k and b ∈ Il(P0)

⇐⇒ (M, l |=b P0(x) ⇒ M, l |=b βc) for all l � k and b ∈ D
⇐⇒ M, l |=b P0(x)→ βc for all l � k and b ∈ D
⇐⇒ M, k |=a (∀x)(P0(x)→ βc)

⇐⇒ M, k |=a ((∀x)β)c.

Mr, k |=a (∃x)β ⇐⇒ Mr, k |=b β for some b ∈ Dk

⇐⇒ M, k |=b βc for some b ∈ Ik(P0)

⇐⇒ (M, k |=b P0(x) and M, k |=b βc) for some b ∈ D
⇐⇒ M, k |=b P0(x) ∧ βc for some b ∈ D
⇐⇒ M, k |=a (∃x)(P0(x) ∧ βc)
⇐⇒ M, k |=a ((∃x)β)c.

Theorem 17. For any linear frame K = 〈K,�〉 and formula α ∈ Fmr
1,

|=IKL1(K) (∀x)α ⇐⇒ |=CDIKL1(K) ((∀x)α)c.

Proof. (⇒) Suppose that 6|=CDIKL1(K) ((∀x)α)c, i.e., M1, k0 6|=a αc for some
CDIKL1(K)-model M1 = 〈K,�, {D}, {Ik}k∈K〉, k0 ∈ K, and a ∈ Ik0(P0).
Let K0 = 〈[k0),�〉. Then also M2, k0 6|=a αc, where M2 is the CDIKL1(K0)-
model 〈[k0),�, {D}, {Ik}k∈[k0)〉 satisfying

⋂
k∈[k0) Ik(P0) 6= ∅. An application of

Lemma 16 yields Mr
2, k0 6|=a α. We can then extend Mr

2 to an IKLr1(K)-model by
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defining Dl := Dk0 and Il(Pi) := Ik0(Pi) for all l ≺ k0, giving 6|=IKL1(K) (∀x)α
as required.

(⇐) Suppose that 6|=IKL1(K) (∀x)α, i.e., (∀x)α is not valid in some IKL1(K)-
model M. Since α does not contain P0, we can assume that M is an IKLr1(K)-
model. Because the map (−)r is surjective, there exists a CDIKL1(K)-model N
such that M = Nr. By Lemma 16, the formula ((∀x)α)c is not valid in N and
hence 6|=CDIKL1(K) ((∀x)α)c as required.

Now let Fmr
�♦ ⊆ Fm�♦ denote the set of modal formulas not containing p0.

For each ϕ ∈ Fmr
�♦, we define ϕc ∈ Fm�♦ inductively by relativizing modalities

to p0. That is, (pi)
c := pi for each i ∈ N+, ⊥c := ⊥, >c := >, (ϕ?ψ)c := ϕc ?ψc

for ? ∈ {∧,∨,→}, (�ϕ)c := �(p0 → ϕc), and (♦ϕ)c := ♦(p0 ∧ ϕc).

Theorem 18. For any formula ϕ ∈ Fmr
�♦ and Gödel set A,

|=S5(A) ϕ ⇐⇒ |=S5(A)C (�ϕ)c.

Proof. Consider any Gödel set A. By Theorem 15, there exists a countable linear
frame K such that both |=S5(A) ϕ if and only if |=IKL1(K) ϕ

◦, and |=S5(A)C ϕ if and
only if |=CDIKL1(K) ϕ

◦ hold. Note that the translations (−)◦ and (−)c commute on
formulas ϕ ∈ Fmr

�♦. Combining this with Theorem 17 gives for every ϕ ∈ Fmr
�♦,

|=S5(A) ϕ ⇐⇒ |=S5(A) �ϕ

⇐⇒ |=IKL1(K) (�ϕ)◦

⇐⇒ |=CDIKL1(K) ((�ϕ)◦)c

⇐⇒ |=CDIKL1(K) ((�ϕ)c)◦

⇐⇒ |=S5(A)C (�ϕ)c.

Let us remark finally that the predicate used in this interpretation corresponds
exactly to the existence predicate considered in the context of Scott logics in [33]
and is closely related also to the normalized probability distribution used for the
possibilistic logic studied in [34].

7. A Finite Model Property

In this section, we establish a finite model property for the logic S5(A)C (and
hence also S5(A)) for any Gödel set A. Crucially, however, this property does not
hold in general with respect to the “standard” S5(A)C-models defined in Section 3.
Indeed, for any Gödel set A containing at least one right accumulation point c, the
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formula ♦(p1 → �p1) is valid in all finite S5(A)C-models, but not in any infinite
universal S5(A)C-model 〈N+, V 〉 satisfying V (p1, n) ∈ A ∩ (c, c + 1

n
] for each

n ∈ N+. A previous paper [16] by three of the authors with J. Rogger, contains
a flawed proof that these logics have the finite model property with respect to an
alternative semantics.7 Here, we introduce a further (related) alternative semantics
that avoids the problem encountered in that paper.

Let P ⊆ {pi}i∈N be a set of propositional variables and let Fm�♦(P ) denote
the set of formulas in Fm�♦ with variables in P . A relativized universal S5(A)C-
model over P (for short, ruS5(A)C-model over P ) based on a Gödel set A is a
triple M = 〈W,V, T 〉 consisting of finite non-empty sets W and T satisfying
{0, 1} ⊆ T ⊆ A, and a map V : P ×W → A. The map V is extended inductively
to V : Fm�♦(P )×W → A as follows, where ? ∈ {∧,∨,→}:

V (⊥, w) = 0

V (>, w) = 1

V (ϕ ? ψ,w) = V (ϕ,w) ? V (ψ,w)

V (�ϕ,w) =
∨
{r ∈ T | r ≤

∧
{V (ϕ, v) | v ∈ W}}

V (♦ϕ,w) =
∧
{r ∈ T | r ≥

∨
{V (ϕ, v) | v ∈ W}}.

We say that ϕ ∈ Fm�♦(P ) is valid inM if V (ϕ,w) = 1 for all w ∈ W .
Note that sinceW and T are finite, V (�ϕ,w), V (♦ϕ,w) ∈ T for all �ϕ,♦ϕ ∈

Fm�♦(P ) and w ∈ W , and these values are independent of w. Moreover, a simple
induction on the length of ϕ ∈ Fm�♦(P ) shows that always

V (ϕ,w) ∈ BM := {V (pi, v) | pi ∈ P ; v ∈ W} ∪ T.

Indeed,M may also be viewed as an ruS5(BM)C-model over P ; that is, we may
assume that V is a function from P ×W to BM. In particular, if P is finite, then
M is a truly finite object.

Recall that R(A) and L(A) denote the sets of right and left accumulation
points, respectively, of a Gödel set A. An ruS5(A)C-modelM = 〈W,V, T 〉 over
P ⊆ {pi}i∈N is called Σ-normal for Σ ⊆ Fm�♦(P ) if for all �ϕ,♦ψ ∈ Σ and

7More precisely, Lemma 23 of [16] is false unless T� = T♦; this restriction does not cause
any problems for S5(G)C, but is not sufficient for other cases.
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w ∈ W ,

V (�ϕ,w) 6∈ R(A) =⇒ there exists v ∈ W such that V (�ϕ,w) = V (ϕ, v)

V (♦ψ,w) 6∈ L(A) =⇒ there exists v ∈ W such that V (♦ψ,w) = V (ψ, v).

Let us also call Σ ⊆ Fm�♦ a fragment if it is closed under subformulas. The next
lemma shows that (roughly speaking) for a finite fragment, validity in a (possibly
infinite) universal S5(A)C-model can be matched to validity in a corresponding
ruS5(A)C-model that is normal for the fragment.

Lemma 19. Let A be a Gödel set and letM = 〈W,V 〉 be a universal S5(A)C-
model with w ∈ W . For any P ⊆ {pi}i∈N and finite fragment Σ ⊆ Fm�♦(P ),
there exists a Σ-normal ruS5(A)C-model M′ = 〈W ′, V ′, T 〉 over P with w ∈
W ′ ⊆ W , |W ′| ≤ |Σ|, and |BM′| ≤ |Σ|2, satisfying V ′(ϕ, v) = V (ϕ, v) for all
ϕ ∈ Σ and v ∈ W ′.

Proof. We define

T := {V (�ϕ,w) | �ϕ ∈ Σ} ∪ {V (♦ϕ,w) | ♦ϕ ∈ Σ} ∪ {0, 1}

and write T = {0 = t0 < t1 < · · · < tn = 1}. Then for each �ϕ ∈ Σ, we have
V (�ϕ,w) = ti for some 0 ≤ i ≤ n and we choose a witness v�ϕ ∈ W satisfying

ti ∈ R(A) =⇒ V (ϕ, v�ϕ) ∈ [ti, ti+1) ∩ A
ti 6∈ R(A) =⇒ V (�ϕ,w) = V (ϕ, v�ϕ) = ti.

Similarly, for each ♦ϕ ∈ Σ, we have V (♦ϕ,w) = ti for some 0 ≤ i ≤ n, and we
choose a witness v♦ϕ ∈ W satisfying

ti ∈ L(A) =⇒ V (ϕ, v♦ϕ) ∈ (ti−1, ti] ∩ A
ti 6∈ L(A) =⇒ V (♦ϕ,w) = V (ϕ, v♦ϕ) = ti.

We now define

W ′ := {w} ∪ {v�ϕ | �ϕ ∈ Σ} ∪ {v♦ϕ | ♦ϕ ∈ Σ}

and V ′(pi, v) := V (pi, v) for all pi ∈ P and v ∈ W ′. Then by construction,
M′ = 〈W ′, V ′, T 〉 is a Σ-normal ruS5(A)C-model over P and clearly |W ′| ≤
|Σ|. It follows by induction on formula length that V ′(ϕ, v) = V (ϕ, v) for all
ϕ ∈ Σ, v ∈ W ′. The base cases and the cases of the propositional connectives are
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straightforward. If ϕ = �ψ, then V (�ψ,w) = ti for some 0 ≤ i ≤ n, and we
have two cases. If ti ∈ R(A), then

V (�ψ,w) =
∧
{V (ψ, v) | v ∈ W} ≤

∧
{V (ψ, v) | v ∈ W ′} ≤ V (ψ, v�ψ) < ti+1,

and if ti 6∈ R(A), then

V (�ψ,w) =
∧
{V (ψ, v) | v ∈ W} ≤

∧
{V (ψ, v) | v ∈ W ′} ≤ V (ψ, v�ψ) = ti.

Together with the induction hypothesis, this gives

V (�ψ,w) =
∨
{r ∈ T | r ≤

∧
{V (ψ, v) | v ∈ W ′}}

=
∨
{r ∈ T | r ≤

∧
{V ′(ψ, v) | v ∈ W ′}}

= V ′(�ψ,w).

The case ϕ = ♦ψ is very similar. It easily follows also that |BM′ | ≤ |Σ|2.

The second crucial lemma proceeds in the other direction; it shows that (roughly
speaking) validity for a fragment in an ruS5(A)C-model can be matched to validity
in a corresponding universal S5(A)C-model. The key idea here is to approximate
values in the set T taken by formulas �ϕ and ♦ϕ by taking multiple copies of the
set of worlds and choosing elements in A that get closer and closer to the values
in T from the left or right as appropriate.

Lemma 20. Let M = 〈W,V, T 〉 be a Σ-normal ruS5(A)C-model over a finite
set P ⊆ {pi}i∈N for a fragment Σ ⊆ Fm�♦(P ). Then there exists a (countable)
universal S5(A)C-model M′ = 〈W ′, V ′〉 such that W ⊆ W ′ and V (ϕ,w) =
V ′(ϕ,w) for all ϕ ∈ Σ and w ∈ W .

Proof. Let T = {0 = t0 < t1 < · · · < tN = 1}. For each ti ∈ R(A), we fix a
strictly descending sequence (rin)n∈N+ ⊆ A ∩ (ti, ti+1) such that ti < rin < ti + 1

n

for each n ∈ N+. Similarly, for each ti ∈ L(A), we fix a strictly ascending
sequence (sin)n∈N+ ⊆ A ∩ (ti−1, ti) such that ti − 1

n
< sin < ti for each n ∈ N+.

For each 0 ≤ i < N , we write

[ti, ti+1] ∩BM = {ti = bi0 < bi1 < · · · < biki < biki+1
= ti+1}.

Note that BM =
⋃

0≤i<N([ti, ti+1] ∩BM).
We now define a map hn : BM → A for each n ∈ N, where
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(i) h0 : BM → A is the identity embedding;

(ii) if n > 0 is odd, then hn(tN) := tN and for each i ∈ {0, 1, . . . , N − 1}, we
define hn(ti) := ti and for each j ∈ {1, . . . , ki},

hn(bij) :=

{
rin+ki−j ti ∈ R(A)

bij ti 6∈ R(A)

(iii) if n > 0 is even, then hn(tN) := tN and for each i ∈ {0, 1, . . . , N − 1}, we
define hn(ti) := ti, and for each j ∈ {1, . . . , ki},

hn(bij) :=

{
si+1
n+j ti+1 ∈ L(A)

bij ti+1 6∈ L(A).

Note that each hn : BM → A is a strictly order-preserving embedding that fixes T .
For each n ∈ N, let Wn denote a disjoint copy of W with elements wn ∈ Wn

corresponding to the element w ∈ W , with W0 = W . Now for each pi ∈ P ,
w ∈ W , and n ∈ N, define

W ′ :=
⋃
n∈N

Wn and V ′(pi, wn) := hn(V (pi, w)).

Defining also V ′(pj, wn) := 0 for j ∈ N and pj 6∈ P , we obtain a universal
S5(A)C-modelM′ = 〈W ′, V ′〉.

We prove by induction on formula length that V ′(ϕ,wn) = hn(V (ϕ,w)) for
all ϕ ∈ Σ, w ∈ W , and n ∈ N. The base cases follow by definition and the fact
that each hn fixes 0 and 1. The cases for propositional connectives follow from
the fact that each hn is a strictly order-preserving embedding fixing 0 and 1.

Now consider ϕ = �ψ ∈ Σ with V (�ψ,w) = ti. Then V (�ψ,w) ≤ V (ψ, v)
and so hn(V (�ψ,w)) ≤ hn(V (ψ, v)) for all v ∈ W . We consider two cases. If
ti 6∈ R(A), then sinceM is Σ-normal, there exists v ∈ W such that V (�ψ,w) =
V (ψ, v) and so hn(V (ψ, v)) = ti for all n ∈ N. If ti ∈ R(A), then i < N and
there exists v ∈ W such that V (ψ, v) ∈ [ti, ti+1) ∩ BM. Then by construction,
hn(V (ψ, v)) ∈ [ti, r

i
n] ⊆ [ti, ti + 1

n
] for each odd n ∈ N. In both cases,

ti ≤
∧
{hn(V (ψ, v)) | v ∈ W ; n ∈ N}

≤
∧
{hn(V (ψ, v)) | v ∈ W ; n ∈ N odd}

= ti = V (�ψ,w).
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Applying the induction hypothesis then gives

V ′(�ψ,w) =
∧
{V ′(ψ,wn) | w ∈ W ; n ∈ N}

=
∧
{hn(V (ψ,w)) | w ∈ W ; n ∈ N}

= V (�ψ,w).

The case for ϕ = ♦ψ ∈ Σ is similar. So we have V ′(ϕ,wn) = hn(V (ϕ,w))
for all ϕ ∈ Σ, w ∈ W , and n ∈ N. Taking n = 0 then gives V ′(ϕ,w) = V (ϕ,w)
for all ϕ ∈ Σ and w ∈ W .

Let Pϕ denote the (finite) set of propositional variables occurring in a formula
ϕ ∈ Fm�♦, and let Σϕ denote the fragment of subformulas in ϕ. The following
theorem expresses the desired finite model property S5(A)C, recalling that an
ruS5(A)C-modelM over a finite set of variables not only has a finite set of worlds,
but may be considered a finite object if A is replaced by BM.

Theorem 21. Let A be a Gödel set. For any ϕ ∈ Fm�♦,

|=S5(A)C ϕ ⇐⇒ ϕ is valid in all Σϕ-normal ruS5(A)C-models over Pϕ.

Proof. If 6|=S5(A)C ϕ, then there exists a universal S5(A)C-model M = 〈W,V 〉
and w ∈ W such that V (ϕ,w) < 1. By Lemma 19, there exists a Σϕ-normal
ruS5(A)C-modelM′ = 〈W ′, V ′, T 〉 over Pϕ such that V ′(ϕ,w) = V (ϕ,w) < 1.

Conversely, if V (ϕ,w) < 1 for somew ∈ W in a Σϕ-normal ruS5(A)C-model
〈W,V, T 〉 over Pϕ, then, by Lemma 20 there exists a universal S5(A)C-model
〈W ′, V ′〉 such that V ′(ϕ,w) = V (ϕ,w) < 1.

Let us remark finally that for the Gödel set [0, 1], the above reasoning yields
also an algebraic finite model property for the logic S5(G)C. That is, the algebraic
semantics for this logic is the variety of monadic Gödel algebras (a subvariety
of monadic Heyting algebras) and it can be shown that Σϕ-normal ruS5(G)C-
models over Pϕ correspond to evaluations into finite members of this variety. A
more straightforward proof of this result, avoiding the use of the machinery of an
alternative frame semantics, is given in [1], but it is currently unclear if such an
approach can be generalized to arbitrary Gödel sets.
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8. Decidability and Complexity

The finite model property established in Theorem 21 does not directly yield
decidability of S5(A)C-validity for an arbitrary Gödel set A. In order to check the
normality condition for an ruS5(A)C-model, we require some representation of
the sets R(A) and L(A), which in general, might not even be recursive. We resolve
this issue here by specifying sufficient conditions on a Gödel set A that ensure the
decidability and even co-NP-completeness of S5(A)C-validity, and hence also of
S5(A)-validity and the corresponding one-variable fragments of first-order Gödel
logics and Corsi logics with or without constant domains.

Observe first that to determine the S5(A)C-validity of a formula ϕ ∈ Fm�♦ it
suffices, by Lemmas 19 and 20, to check validity in Σϕ-normal ruS5(A)C-models
M = 〈W,V, T 〉 over Pϕ. Indeed, as remarked in the previous section, such an
M may be viewed as an ruS5(BM)C-model, where BM is finite. Let us also note
that the property of Σϕ-normality ofM is determined by the sets Tr := T ∩R(A)
and Tl := T ∩ L(A). It therefore follows that the S5(A)C-validity of a formula
ϕ ∈ Fm�♦ of length n is determined by structures of the form

〈W,V,B,≤, 0, 1, T, Tr, Tl〉

satisfying the following conditions:

(i) |W |, |T |, |Tr|, |Tl| ≤ n and |B|, |V | ≤ n2;

(ii) {0, 1}, Tr, Tl ⊆ T ⊆ B and 0 6∈ Tl, 1 6∈ Tr;

(iii) ≤ ⊆ B2 is a linear order with top and bottom elements 1 and 0, respectively;

(iv) 〈W,V, T 〉 is an ruS5(BM)C-model over Pϕ such that for all �ψ,♦ψ ∈ Σϕ

and w ∈ W ,

V (�ψ,w) 6∈ Tr =⇒ there exists v ∈ W such that V (�ψ,w) = V (ψ, v)

V (♦ψ,w) 6∈ Tl =⇒ there exists v ∈ W such that V (♦ψ,w) = V (ψ, v);

(v) the finite structure 〈B,≤, 0, 1, T, Tr, Tl〉 is consistent with A; that is, there
exists an order-embedding f : 〈B,≤, 0, 1〉 → 〈A,≤, 0, 1〉 preserving 0 and
1 such that

f [Tr] = f [T ] ∩ R(A) and f [Tl] = f [T ] ∩ L(A).
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Theorem 22. LetA be a Gödel set. Then S5(A)C-validity and S5(A)-validity are
decidable (co-NP-complete) relative to the problem of checking the consistency of
finite structures with A.

Proof. Consider the following procedure to check the non-validity of a formula
ϕ ∈ Fm�♦ of length n in S5(A)C, where we may assume that all sets involved are
subsets of {0, . . . , n2}:

(1) Guess a structure 〈W,V,B,≤, 0, 1, T, Tr, Tl〉 satisfying (i), (ii), (iii), and (iv);

(2) Check that V (ϕ, i) < 1 for some i ∈ W ;

(3) Check that 〈B,≤, 0, 1, T, Tr, Tl〉 is consistent with A.

It is easy to see that (1) and (2) are problems with complexity in NP, and hence
that the complexity of the full procedure is decidable (in NP) relative to step (3).
Co-NP-hardness follows from the fact that propositional classical logic can be
interpreted in S5(A)C. Finally, the same result for S5(A)-validity follows from
the interpretation of S5(A) in S5(A)C provided by Theorem 18.

Determining the consistency of a structure 〈B,≤, 0, 1, T, Tr, Tl〉 with respect
to a Gödel set A is trivial for some Gödel sets. For example, such a structure is
consistent with A = [0, 1] if and only if Tr = T \{0} and Tl = T \{1}, with
A = G↑ if and only if Tr = ∅ and Tl = {1}, and with A = G↓ if and only
if Tr = {0} and Tl = ∅. Determining consistency with respect to other Gödel
sets may be more complicated, however. The following observation simplifies the
problem.

A finite structure 〈B,≤, 0, 1, T, Tr, Tl〉 satisfying (ii) and (iii) may be coded
via a finite word in the alphabet {a, t, r, l, d}, where each letter represents the
“status” of an element of B with respect to their membership in T , Tr, and Tl:

a for an element of B \T ; r for an element of Tr \Tl;
t for an element of T \(Tr ∪ Tl); l for an element of Tl \Tr;
d for an element of Tr ∩ Tl.

We say that a finite word in the alphabet {a, t, r, l, d} is consistent with a Gödel
set A if this is true of the corresponding finite structure. These words must start
with t or r (the possible status of 0) and end with t or l (the possible status of 1).
In Table 1 we state a number of examples; for Gödel setsA andB, we writeA⊕B
to denote the ordered sum identifying 1A and 0B and, if A is countable, we write
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Gödel set A Words consistent with A

{0, 1
n+1

, . . . , n+1
n+1
} {twt | w ∈ {a, t}∗ of length at most n}

[0, 1] {rwl | w ∈ {a, d}∗}
G↑ {twl | w ∈ {a, t}∗}
G↓ {rwt | w ∈ {a, t}∗}
G↑ ⊕G↑ {twl | w ∈ {a, t}∗} ∪ {twlw′l | w,w′ ∈ {a, t}∗}
G↓ ⊕G↑ {twt | w ∈ {a, t}∗} ∪ {twdw′t | w,w′ ∈ {a, t}∗}
G↑ ×lex G↑ {twl | w ∈ {a, t, l}∗}
G↓ ×lex G↑ {rwl | w ∈ {a, t}∗}

Table 1: Examples of Gödel sets and corresponding consistent words (i.e. structures).

A ×lex B for the lexicographic product. We assume harmlessly that the results of
these operations are also Gödel sets.

All classes of words consistent with the respective Gödel sets in Table 1 form
regular sets of words and are therefore decidable in linear time. It is not difficult to
check that this property is preserved by a number of operations. That is, if the sets
of words consistent with Gödel sets A and B are regular, then so are the sets of
words consistent with A∗, A⊕B, ΣωA = (A⊕A⊕ . . . )t{1}, and A×lexB (if A
is countable), where A∗ denotes the Gödel set A with the ordering reversed. Note
that A⊕G2 adds a new top element and G2⊕A adds a new bottom element to A.
Hence, the disjoint ordered sum is recovered as A ⊕d B = A ⊕ G2 ⊕ B. Using
Cantor’s normal form, it is easy to see that any successor ordinal 2 ≤ α+ 1 < ωω

is a combination of G↑, which corresponds to the ordinal ω + 1, and finite Gödel
sets Gn using the above operations; for example,

ω + n = G↑ ⊕Gn (n ≥ 2)

ω2 + 1 = ΣωG↑

ω2 + ω + 1 = G↑ ×lex G↑ = (ΣωG↑)⊕G↑
ω3 + ω2 + 5 = Σω(ΣωG↑)⊕G↑ ⊕G↑ ⊕G5.

This gives a large family of Gödel sets with a linearly decidable consistency prob-
lem.

Corollary 23. S5(A)C and S5(A) are co-NP-complete for A = [0, 1], A = G↑,
A = G↓, A = Gn for any n ≥ 2, and all finite combinations of these Gödel sets
by (−)∗, ⊕, Σω, and, if its first argument is countable, ×lex.
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Note that Up(ω) and Up(ω∗) are isomorphic to G↓ and G↑, respectively. In
general, for any ordinal α, Up(α) is isomorphic to (α+ 1)∗ and Up(α∗) to α+ 1.
Moreover, for any pair of linear frames K and L we have Up(K∗) = Up(K)∗,
Up(K⊕d L) = Up(L)⊕Up(K), and if ⊕dωK denotes the disjoint ordered sum
of K with itself ω times then Up(⊕dωK) = ΣωUp(K). Hence Theorem 5 yields
the following decidability results.

Corollary 24. IKL1(K) and CDIKL1(K) are co-NP-complete if K is any finite
combination of countable ordinals below ωω and their reverses by (−)∗, ⊕d, and
⊕dω.

This notion of consistency can also be used to compare logics.

Theorem 25. Let A and A′ be two Gödel sets. Suppose that any finite structure
〈B,≤, 0, 1, T, Tr, Tl〉 satisfying (ii) and (iii) is consistent with A if and only if it is
consistent with A′. Then for all ϕ ∈ Fm�♦,

|=S5(A)C ϕ ⇐⇒ |=S5(A′)C ϕ.

Proof. Suppose that 6|=S5(A)C ϕ for some ϕ ∈ Fm�♦. Then by Lemma 19,
there exists a Σϕ-normal ruS5(A)C-model M = 〈W,V, T 〉 over Pϕ such that
V (ϕ,w) < 1 for some w ∈ W . Then the finite structure 〈BM,≤, 0, 1, T, T ∩
R(A), T ∩ L(A)〉 is consistent with A, so by assumption it is also consistent with
A′. We may therefore assume that BM ⊆ A′, T ∩ R(A) = T ∩ R(A′), and
T ∩L(A) = T ∩L(A′). By Lemma 20,M can be extended to a universal S5(A′)C-
model M′ = 〈W ′, V ′〉 such that V ′(ϕ,w) < 1 and so 6|=S5(A′)C ϕ. The other
direction follows by symmetry.

Even undecidable Gödel sets can have a decidable consistency problem. For
example, consider any countable limit ordinal α ≥ ω2. Then the words consistent
with α + 1 are all twl with w ∈ {a, t, l}∗. The same holds for ω2 + 1, so by
Theorem 25, we obtain for any ϕ ∈ Fm�♦,

|=S5(α+1)C ϕ ⇐⇒ |=S5(ω2+1)C ϕ.

Since undecidable countable ordinals α ≥ ω2 exist, there are decidable logics
S5(A)C (and corresponding one-variable fragments) for which A is undecidable.
In contrast, none of the full first-order Gödel logics determined by these ordinals
are recursively enumerable [35].

A sequel to this paper will provide a full classification of all logics S5(A)C and
show that any logic S5(A)C is equivalent to S5(B)C whereB is a countable Gödel
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set obtained as in Corollary 23. From this result it follows that S5(A)C and S5(A)
are co-NP-complete for any Gödel setA and hence, in light of Theorems 5 and 15,
that the one-variable fragments IKL1(K) and CDIKL1(K) are co-NP-complete for
any countable linear frame K. These complexity results also apply to the one-
variable fragment of any first-order Gödel logic determined by a Gödel set A,
extending results in [36] for weaker fragments.

In particular, it will be shown that for any countable ordinal α, there is an
ordinal β ≤ ω2 such that S5(α + 1)C is equivalent to S5(β + 1)C, and the same is
true for the reversed ordinals (α+1)∗. By Theorems 5 and 15 and the observations
above, this reduction applies also to one-variable fragments of intermediate logics
over countable frames α or α∗, yielding one-variable versions of results in [37]
and [38].
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